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Abstract

Temporal reasoning problems occur in many applica-
tion domains of Artificial Intelligence; therefore, it is
important for us to develop algorithms for solving them
efficiently. While some problems like Simple Temporal
Problems are known to be tractable, some other prob-
lems like Disjunctive Temporal Problems are known to
be NP-hard. In this paper, we provide a Linear Program-
ming (LP) duality perspective on temporal reasoning
problems. In many cases, we show that their LP du-
als are the commonly-studied flow problems in Graph
Theory. Using the general theory of LP duality, we de-
velop novel algorithms for efficiently solving several
temporal reasoning problems. We also show that other
previously-known efficient methods in temporal reason-
ing also fit into this perspective of LP duality.

Introduction
Temporal reasoning problems occur in many application do-
mains of Artificial Intelligence. For example, in medicine,
temporal reasoning is used to aid doctors monitor the de-
velopment of a disease and plan treatment accordingly (Au-
gusto 2005); in job scheduling, it is used to schedule jobs
on machines for makespan minimization (Ji, He, and Cheng
2007); in autonomous space exploration, it is used to sched-
ule spacecraft operations (Knight et al. 2001); in transporta-
tion domains, it is used for throughput maximization (Feijer,
Savla, and Frazzoli 2012); and in smart home and smart grid
domains, temporal reasoning is used in appliance scheduling
for energy cost minimization (Mohsenian-Rad and Leon-
Garcia 2010). Given the extensive applications of tempo-
ral reasoning, it is imperative for us to develop efficient al-
gorithms for solving temporal reasoning problems. In most
cases, this necessitates the design of algorithms that have
polynomial time complexities (preferably of low order).

Some problems in temporal reasoning, for example, Sim-
ple Temporal Problems (STPs) (Dechter, Meiri, and Pearl
1991), are known to be tractable, i.e, solvable in polyno-
mial time. STPs are widely used for reasoning about dif-
ference constraints between the execution times of various
events. An STP S is defined by a directed graph 〈X , E〉,
where X = {X0, X1, ...XN} is the set of nodes rep-
resenting events, interchangeably used for their execution
times, and E is the set of directed edges between them

representing simple temporal constraints. X0 is set to 0
to establish a frame of reference; and each directed edge
eij = 〈Xi, Xj〉 ∈ E is annotated with a pair of real num-
bers [LB(eij), UB(eij)], representing the simple temporal
constraint LB(eij) ≤ Xj − Xi ≤ UB(eij). STPs can
be solved in polynomial time using shortest path compu-
tations on their distance graph representations. In the dis-
tance graph representation, the constraint Xj − Xi ≤ ρ is
represented as an edge from Xi to Xj annotated with ρ.
The absence of negative cost cycles in the distance graph
characterizes the consistency of the temporal constraints
in STPs (Dechter, Meiri, and Pearl 1991). Since the dis-
tance graph can have negative cost edges, shortest paths are
computed using the Bellman-Ford algorithm (Kleinberg and
Tardos 2006). Improved algorithms for solving STPs have
been developed by several authors (Xu and Choueiry 2003;
Planken, de Weerdt, and van der Krogt 2008).

Some other problems in temporal reasoning, for exam-
ple, Disjunctive Temporal Problems (DTPs) (Stergiou and
Koubarakis 1998; Oddi and Cesta 2000), are known to be
NP-hard. DTPs are more expressive than STPs since they
allow disjunctions of the form

∨
t (Lt ≤ Xjt −Xit ≤ Ut)

where ∀ t : Xit , Xjt ∈ X . In planning and scheduling,
DTPs arise in dispatchable execution (Shah and Williams
2008), threat resolution in partial order planning (Nguyen
and Kambhampati 2001), and plan merging (de Weerdt
2003). Although restricted classes of DTPs can be solved
in polynomial time (Kumar 2005; 2006), they generally re-
quire an exponential search space.

Several other temporal reasoning problems with or with-
out resources, preferences, and/or controllability have been
characterized for their complexities (Yorke-Smith, Venable,
and Rossi 2003). For example, constructing resource en-
velopes in producer-consumer models can be done in poly-
nomial time (Kumar 2003; Muscettola 2004), but job shop
scheduling problems that reason about contention for re-
sources are NP-hard (Smith and Cheng 1993). Similarly,
temporal reasoning problems with convex preference func-
tions (Morris et al. 2004) or piecewise constant preferences
on individual variables (Kumar 2004) are tractable, whereas
they are NP-hard for general functions.

In this paper, we provide a Linear Programming (LP) du-
ality perspective on temporal reasoning problems. In many
cases, we show that their LP duals are the commonly-studied



s t

v1

v2

v3

v4

40
20

40

15
20

45

155

35

(a)

v1

v2

v3

v4

〈20,3〉 〈15
,−
2〉

〈2
5,
−
1〉

〈10, 1〉

〈18, 2〉

(b)

Figure 1: (a) shows an instance of the maxflow problem
where each edge is annotated with a nonnegative capacity;
and (b) shows an instance of the MCCP where each edge is
annotated with a nonnegative capacity and a cost of pushing
a unit flow through it.

flow problems in Graph Theory. Their relationship to flow
problems opens the possibility for solving them efficiently
using state-of-the-art flow-based techniques. Moreover, the
LP duality perspective can be used to unify the previous ap-
proaches for tractable temporal reasoning problems.

Background
In this section, we briefly describe background material that
is relevant to this paper. We begin with the description of
an LP problem and its dual (Chvátal 1983; Vazirani 2001,
Chap. 12). An LP problem is the problem of maximizing (or
minimizing) a linear objective function over a certain set of
variables that are also constrained by a finite number of lin-
ear equations or linear inequalities. A feasible solution is one
that satisfies all constraints; and an optimal solution is one
that is feasible and has the maximum (minimum) value with
respect to the objective function. Every LP problem is asso-
ciated with a dual, referred to as its LP dual. The original
LP problem is referred to as the primal; and it is well known
that the dual of the dual is the primal. The variables in the
dual are in one-to-one correspondence with the constraints
in the primal, and vice versa.

If the primal is a maximization (minimization) problem,
the dual is a minimization (maximization) problem. Several
important theorems guide the relationship between a given
primal and its dual. These include the weak duality theorem,
the strong duality theorem, and the complementary slack-
ness theorem. The weak duality theorem states that for a
primal maximization (minimization) problem, any feasible
solution has a value that is less than (greater than) or equal
to the value of any feasible solution for its dual minimization
(maximization) problem. The strong duality theorem states
that the value of the optimal solution of the primal equals
that of the dual. In addition, the complementary slackness
theorem establishes that for a given optimal solution of a
feasible and bounded primal, there exists an optimal solu-
tion of the dual such that if a primal constraint is not tightly
satisfied, then the dual variable corresponding to the primal
constraint is equal to 0; and for a given optimal solution of
the dual, there exists an optimal solution of the primal such
that for any dual variable that is not equal to 0, its corre-
sponding primal constraint is tightly satisfied. Finally, if the
value of the optimal solution of the primal is unbounded,
then the dual is infeasible, and vice versa.

LP problems can be solved in polynomial time
(Khachiyan 1980; Karmarkar 1984). Moreover, LP dual-
ity is a very powerful mathematical concept that is exten-
sively used for analyzing combinatorial problems. LP for-
mulations and their duals have been successfully used in the
design of efficient polynomial-time exact/approximation al-
gorithms for many combinatorial problems for which other
techniques are unviable (Vazirani 2001).

The maxflow problem is a special case of an LP prob-
lem which can be formulated graph-theoretically. It is char-
acterized by a directed graph G = 〈V,E〉, where V =
{v1, v2, . . . , vn} is the set of nodes, and E is the set of di-
rected edges. There are two special nodes, s ∈ V referred
to as the source and t ∈ V referred to as the sink. Each
edge e = 〈vi, vj〉 ∈ E is annotated with a nonnegative
capacity, U(e). A flow is an assignment of a nonnegative
number f(e) for each edge, such that two kinds of con-
straints are satisfied: (capacity constraints) for each edge
e ∈ E, 0 ≤ f(e) ≤ U(e); and (conservation constraints)
for each node v ∈ V \{s, t},

∑
vi:〈vi,v〉∈E f(〈vi, v〉) =∑

vi:〈v,vi〉∈E f(〈v, vi〉). The goal is to maximize the total
amount of flow emanating from s (or equivalently, sinking
into t) (Kleinberg and Tardos 2006). Figure 1a shows an ex-
ample of a maxflow problem where each edge is annotated
with its capacity.

It is easy to see that the capacity constraints, the conser-
vation constraints, and the objective function of a maxflow
problem are all linear with respect to the flow variables
f(e)’s. Therefore, it can be solved in polynomial time using
a generic LP solver. However, because of its special struc-
ture, it can be solved very efficiently in strongly polynomial
time (Orlin 2013). Most efficient procedures for the maxflow
problem make use of the residual graph associated with a
partial solution. The LP dual of a maxflow problem is the
well-known mincut problem.

The mincost circulation problem (MCCP) is a generaliza-
tion of the maxflow problem with two primary differences.
First, there are no special nodes s and t, i.e., the conservation
constraints are required to be true for all nodes. Second, each
edge e is not only annotated with a nonnegative capacity
U(e) as before but is also annotated with a cost c(e) that is
free to be zero, positive, or negative. The goal is to minimize∑
e∈E c(e)f(e). The maxflow problem can be considered as

a special case of the MCCP by adding a back edge from t to
s of capacity +∞ and cost −∞. Like the maxflow problem,
the MCCP also qualifies as a special case of an LP prob-
lem and can be solved in polynomial time using a generic
LP solver and in strongly polynomial time using efficient al-
gorithms that leverage its additional structure (Tardos 1985;
Goldberg and Tarjan 1989; Orlin 1993). Figure 1b shows an
example of an MCCP where each edge is annotated with a
capacity as well as a cost.

The STP and its LP Dual
In this section, we describe the STP as an instance of the
LP problem and examine its dual. We first present an al-
ternative and interchangeable formulation of the STP for a
simpler and more intuitive explanation of its dual. Specif-
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Figure 2: (a) shows an STP in its original formulation. Each
directed edge represents a simple temporal constraint speci-
fied using a lower and an upper bound. For example,X1 and
X2 are connected by a directed edge that encodes the sim-
ple temporal constraint 0 ≤ X2 − X1 ≤ 5. (b) shows the
MCCP representation of the LP dual of the STP assuming
that each edge is of infinite capacity and the annotation on it
represents the cost of pushing a unit flow through it.

ically, we define an STP S as a directed graph 〈X , E ′〉,
where X remains the same as previously defined, but E ′, the
set of directed edges, is defined as follows. For each edge
eij = 〈Xi, Xj〉 ∈ E annotated with [LB(eij), UB(eij)],
we construct two edges in E ′, namely, e′ij annotated with
ρij and e′ji annotated with ρji, where ρij = UB(eij) and
ρji = −LB(eij). In this new formulation, any edge e′uv
with its annotation ρuv represents the simple temporal con-
straint Xv −Xu ≤ ρuv .

The primal LP formulation of an STP is as follows:

max

N∑
i=1

0 ·Xi s.t. (1)

∀ e′ij ∈ E ′ : Xj −Xi ≤ ρij . (2)

We note that since the STP is a feasibility problem with a
degenerate objective function, X0 = 0 does not have to be
explicitly encoded as it is merely a reference point. The LP
dual of the above STP is as follows:

min
∑

e′ij∈E
′

ρij · fij s.t. (3)

∀Xi ∈ X :
∑

j:e′ji∈E
′

fji −
∑

j:e′ij∈E
′

fij = 0 (4)

∀ e′ij ∈ E ′ : fij ≥ 0. (5)

Here, the fij’s are the dual variables corresponding to the
primal constraints in Equation (2). They are nonnegative be-
cause the corresponding primal constraints are inequalities.
Similarly, the linear constraints in Equation (4) are equali-
ties because the corresponding primal variables are free vari-
ables, i.e., the Xi’s can be zero, positive, or negative.

We note that the LP dual of the STP can be interpreted as
an MCCP by treating the Xi’s as the nodes and each dual
variable fij as the flow variable on e′ij . Indeed, fij is con-
strained to be nonnegative as required by the MCCP; and the
linear equalities in Equation (4) correspond to the conserva-
tion constraints for all nodes. The ρij’s can be interpreted as
the costs on the edges and are allowed to be zero, positive,

or negative. The capacity constraints, however, do not fea-
ture in the LP dual. This is equivalent to having an infinite
capacity on each edge in the MCCP. Figure 2 shows an STP
and the MCCP representation of its LP dual.

It is easy to see that an MCCP instance that does not have
capacity constraints on its edges admits an optimal solution
with unbounded value if and only if there is a negative cost
cycle. In such a case, an increasing amount of flow can cir-
culate through this cycle, driving down the value of a feasi-
ble flow indefinitely. By LP duality, the unbounded nature of
the dual corresponds to the infeasibility of the primal. There-
fore, the STP is feasible if and only if the MCCP interpreta-
tion of its LP dual does not have any negative cost cycles.

This characterization of the feasibility of an STP has been
discovered in (Dechter, Meiri, and Pearl 1991) using the
distance graph representation. Therefore, the distance graph
representation of an STP is actually a representation of its
LP dual.

STPs with Linear Objective Functions
In this section, we consider LP problems that have simple
temporal constraints and a linear objective function. That is,
they are of the following form:

max

N∑
i=1

wi ·Xi s.t. (6)

∀ e′ij ∈ E ′ : Xj −Xi ≤ ρij . (7)

We note that this LP problem has an optimal solution of
unbounded value if the simple temporal constraints are fea-
sible. This is because the reference point X0 does not yet
have a fixed value in this formulation while all the simple
temporal constraints in Equation (7) are relative. Therefore,
given any feasible solution, simply adding a fixed value to
all variables preserves feasibility. However, doing so can in-
crease the value of the objective function indefinitely and
make it unbounded. To avoid this problem, we can either set
X0 to be equal to 0 using a constraint or we can formulate
the following equivalent LP problem:

max

N∑
i=1

wi · (Xi −X0) s.t. (8)

∀ e′ij ∈ E ′ : Xj −Xi ≤ ρij . (9)

The LP dual of the above formulation is as follows:

min
∑

e′ij∈E
′

ρij · fij s.t. (10)

∀Xi ∈ X\X0 :
∑

j:e′ji∈E
′

fji −
∑

j:e′ij∈E
′

fij = wi (11)

∀ e′ij ∈ E ′ : fij ≥ 0 (12)∑
j:e′j0∈E

′

fj0 −
∑

j:e′0j∈E
′

f0j = −
N∑
i=1

wi.

(13)

As before, we can try to interpret the LP dual as an MCCP
instance. Let δ(Xi) be the sum of the incoming flows to Xi

minus the sum of the outgoing flows from Xi. We note that
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Figure 3: (a) shows the STP in Figure 2a with a linear ob-
jective function. Each node other than X0 is annotated with
a number wi that corresponds to the term wi · (Xi −X0) in
the objective function. (b) shows the MCCP representation
of the LP dual of the STP where each edge is only annotated
with its cost as in Figure 2b. Here, each node is annotated
with δ(Xi).
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Figure 4: Shows a new MCCP without deficits and excesses
for the example in Figure 3b. We add two special nodes,
s ∈ V referred to as the source, and t ∈ V referred to as the
sink. An edge of capacity |δ(Xi)| and cost zero is added to
connect s with any nodeXi that has a deficit |δ(Xi)|; and an
edge of capacity |δ(Xi)| and cost zero is added to connect
any node Xi that has an excess |δ(Xi)| with t. Such edges
are shown in blue. A back edge, shown in red, is added from
t to s with capacity +∞ and cost −∞.

δ(Xi) = wi for Xi ∈ X\X0 and δ(X0) = −
∑N
i=1 wi.

If δ(Xi) < 0, we say that there is a deficit |δ(Xi)| =
−δ(Xi) at Xi. If δ(Xi) > 0, we say that there is an ex-
cess |δ(Xi)| = +δ(Xi) at Xi. We note that the only places
where the wi’s appear in the dual are in Equation (11) and
Equation (13). Here, they compromise the conservation con-
straints by introducing a deficit or an excess at each node.
Once again, the capacity constraints do not feature in the
dual. Figure 3 shows an STP with a linear objective function
and the MCCP representation of its LP dual with deficits and
excesses at its individual nodes.

Figure 4 shows how these deficits and excesses at indi-
vidual nodes can be reformulated as a new MCCP without
deficits or excesses at any of the nodes. In the new MCCP,
we first add two special nodes: s ∈ V referred to as the
source, and t ∈ V referred to as the sink. We then add an
edge of capacity |δ(Xi)| and cost zero to either connect s
with any node Xi that has a deficit |δ(Xi)| or connect any

node Xi that has an excess |δ(Xi)| with t. Finally, a back
edge is added from t to s with capacity +∞ and cost −∞.

We now prove the equivalence of the new MCCP with-
out deficits and excesses to the original MCCP with deficits
and excesses. We start by arguing that any optimal circu-
lation g∗ for the new MCCP saturates all the edges ema-
nating from s and all the edges leading into t. It is easy to
see that g∗ should saturate all the edges emanating from s
or all the edges leading into t.1 This is because the flow
from s to t has to be maximized for the −∞ cost incentive
on the back edge from t to s. It now suffices to prove that∑
Xi:δ(Xi)<0−δ(Xi) =

∑
Xi:δ(Xi)>0 δ(Xi). From Equa-

tion (11), we know that for any Xi other than X0, δ(Xi) =

wi. From Equation (13), we know that δ(X0) = −
∑N
i=1 wi.

Therefore,
∑
Xi:δ(Xi)>0 δ(Xi) −

∑
Xi:δ(Xi)<0−δ(Xi) =∑

Xi∈X\X0:wi>0 wi −
∑
Xi∈X\X0:wi<0−wi + δ(X0) =∑

Xi∈X\X0
wi −

∑N
i=1 wi = 0.

We then prove that if f∗ is the optimal circulation for the
original MCCP, it can be extended to an optimal circulation
g∗ for the new MCCP, and vice versa. Given f∗, let g∗ij = f∗ij
for all edges e′ij ∈ E ′; let g∗si = |δ(Xi)| for a newly added
edge from s to Xi; and let g∗it = |δ(Xi)| for a newly added
edge from Xi to t. It is clear that g∗ is a feasible circulation
since deficits and excesses in the original MCCP are now
compensated by the saturation of the new edges. g∗ is also
an optimal circulation for two reasons: (a) f∗ is an optimal
circulation through all edges that do not involve s or t; and
(b) g∗ saturates all the edges emanating from s and all the
edges leading into t, and from the arguments in the previous
paragraph, no other optimal circulation can push different
amounts of flow on these edges. Conversely, given an op-
timal circulation g∗ for the new MCCP, its projection onto
the edges in E ′ is an optimal circulation f∗ for the origi-
nal MCCP. This can be easily proved by contradiction. Sup-
pose there exists a circulation f ′ that is better than f∗. Then,
f ′ can be extended to an optimal circulation g′ for the new
MCCP that is better than g∗ (since all saturated edges from s
and all saturated edges to t contribute equally to g′ and g∗).
This contradicts our assumption of an optimal g∗.

From the previous section, we know that the primal is in-
feasible if and only if the distance graph has a negative cost
cycle. This is consistent with the fact that the same distance
graph appears in the dual MCCP, in which we can circulate
an infinite amount of flow and make the dual MCCP un-
bounded if and only if there is a negative cost cycle. We note
that the edges added in the new MCCP cannot participate in
an infinite circulation because of the bounded capacities on
the edges emanating from s and the edges leading into t.

LP duality can also help us recognize an unbounded pri-
mal. We know that an unbounded primal is characterized by
an infeasible dual. Consider a feasible circulation g for the
new MCCP that saturates all the edges emanating from s and
all the edges leading into t. Its projection onto the edges in E ′
is a feasible circulation for the original MCCP. Conversely, a

1For simplicity, we assume that there is a path from s to t. If this
is not the case, trivial simple temporal constraints can be added to
induce edges of high costs that make t reachable from s.



Algorithm 1: Shows a strongly-polynomial-time algo-
rithm for solving STPs with linear objective functions
using LP duality and flow-based techniques.

1 Function
SOLVE-STP-WITH-LINEAR-OBJECTIVE

Input: An LP problem that has simple temporal
constraints and a linear objection function
and is of the form in Equations (8) and (9);

Output: An optimal solution to the LP problem;
2 • Construct the LP dual and its MCCP

interpretation:
3 Construct the LP dual of the problem with fij’s

as the dual variables;
4 Interpret the LP dual as an MCCP with deficits

and excesses;
5 • Reformulate the LP dual as a new MCCP without

deficits and excesses:
6 Add two special nodes, s referred to as the

source, and t referred to as the sink;
7 Add a back edge from t to s with capacity +∞

and cost −∞;
8 For each node Xi that has a deficit |δ(Xi)|, add

an edge of capacity |δ(Xi)| and cost zero from
s to Xi;

9 For each node Xi that has an excess |δ(Xi)|,
add an edge of capacity |δ(Xi)| and cost zero
from Xi to t;

10 • Solve the new MCCP:
11 Use the strongly-polynomial-time algorithm

in (Orlin 1993) to solve the new MCCP;
12 • Tighten primal constraints using complementary

slackness:
13 For each dual variable fij : e′ij ∈ E ′, if fij 6= 0,

tighten the corresponding constraint in the
primal such that Xj −Xi = ρij ;

14 • Solve the new STP and return solution:
15 Solve the new STP with tightened primal

constraints using the Bellman-Ford algorithm;
16 return any solution to this new STP;

feasible circulation for the original MCCP is also a feasible
circulation for the new MCCP when it is augmented with
flow that saturates all the edges emanating from s and all the
edges leading into t. Therefore, the primal is bounded if and
only if the original MCCP is feasible, and if and only if it is
possible to saturate all the edges emanating from s and all
the edges leading into t in the new MCCP.

Algorithm 1 shows how to solve an STP with a linear ob-
jective function in strongly polynomial time when it is feasi-
ble and bounded. The algorithm is based on an interpretation
of the LP dual of the problem as an MCCP with deficits and
excesses (lines 2-4) and a subsequent reformulation of this
MCCP to a new MCCP without deficits and excesses (lines
5-9). We showed that the new MCCP is equivalent to the LP
dual of the STP with a linear objective function. Algorithm 1

F〈Xi,Xj〉(t)

t
r1 r2 r3 r4 r5 r6

L1
L2

L3
L4

L5

s1

s2
s3

s4

s5

Xi Y1 Y2 Y3 Y4 Y5 Xj

[r1, r1] [0, L1] [0, L2] [0, L3] [0, L4] [0, L5]

Figure 5: The top part of the figure shows a piecewise lin-
ear and convex F〈Xi,Xj〉(t). Here, there are K〈Xi,Xj〉 = 6
landmarks, denoted by r1, r2, . . . , r6. L1, L2, . . . , L5 are
the lengths of the intervals between consecutive landmarks.
s1, s2, . . . , s5 are the slopes of F〈Xi,Xj〉(t) in these inter-
vals. The bottom part of the figure shows a representation
of the auxiliary variables and the linear constraints between
them created for casting F〈Xi,Xj〉(t) as the projection of an
LP problem.

solves the MCCP (lines 10-11) and makes use of its solution
in accordance with the complementary slackness theorem to
tighten those primal constraints whose corresponding dual
variable does not equal 0 (lines 12-13).2 The tightened pri-
mal is now a regular STP that can be solved easily using the
Bellman-Ford algorithm (lines 14-15). The time complexity
of Algorithm 1 is dominated by lines 11 and 15. Line 11 is
of complexity O(|E| logN(|E| + N logN)), and line 15 is
of complexity O(N |E|2). Put together, the algorithm is of
strongly polynomial time complexity.

We note that the problem of minimizing the makespan of
an STP and the problem of maximizing the throughput of an
STP are both special cases of this LP problem. For makespan
minimization, we can simply introduce a “finish” variable
Xf such that wf = −1 and for allXi:i6=f ,Xi−Xf ≤ 0 and
wi = 0. Such a formulation provides an incentive to sched-
ule the finish eventXf as early as possible, thereby minimiz-
ing the makespan. For throughput maximization, we simply
set wi = −1 for all i. This is because throughput maxi-
mization is equivalent to the minimization of the average
finishing time of all events. Although makespan minimiza-
tion and throughput maximization for STPs were known to
be tractable before, here, we demonstrate not only that they
fall under the perspective of LP duality but also that Algo-
rithm 1 solves a much more general problem for STPs with
linear objective functions.

STPs with Piecewise Linear Convex
Preferences

In this section, we examine an LP formulation of STPs with
piecewise linear convex preferences. Such STPs with pref-
erences (STPPs) have been studied in works such as (Yorke-

2The MCCP is feasible because the primal is bounded.



Smith, Venable, and Rossi 2003; Morris et al. 2004; Kumar
2007). We show that these STPPs are also amenable to more
efficient algorithms based on LP duality. Consider such an
STPP instance where each edge e = 〈Xi, Xj〉 is annotated
with a function Fe(t) that is piecewise linear and convex
with respect to t. Figure 5 shows an example of such a func-
tion. The goal is to maximize the sum of the preferences∑
e=〈Xi,Xj〉∈E Fe(Xj −Xi).
Let the landmarks of Fe(t) be re1, r

e
2, . . . , r

e
Ke

as indicated
in Figure 5. Let Lem be the length of the interval between rem
and rem+1. Let sem be the slope of Fe(t) in the interval be-
tween rem and rem+1. We assume thatXj−Xi is restricted to
be in the interval between re1 and reKe

, where e = 〈Xi, Xj〉.
We first observe that when Fe(t) is piecewise linear and

convex, the slopes of the line segments defining the contour
of Fe(t) are in decreasing order, e.g., s1 > s2 · · · > s5 in
Figure 5. We can exploit this observation and reformulate
F〈Xi,Xj〉(Xj − Xi) as the projection of an LP problem—
with auxiliary variables—onto the variables Xi and Xj as
alluded to in (Kumar 2007). The value of F〈Xi,Xj〉(Xj−Xi)
is equal to the value of the following LP problem (where
e = 〈Xi, Xj〉 is used for simplicity of notation):

max

Ke−2∑
q=1

sq · (Yq+1 − Yq) + s(Ke−1) · (Xj − Y(Ke−1)) s.t.

(14)

∀1 ≤ q ≤ (Ke − 2) : 0 ≤ Yq+1 − Yq ≤ Lq (15)
0 ≤ Xj − Y(Ke−1) ≤ L(Ke−1)

(16)

Y1 −Xi = re1. (17)

We note that in the above LP problem, the variables are
Y1, Y2, . . . , Y(Ke−1). We now prove that the LP problem
over these auxiliary variables represents Fe(Xj −Xi). This
is because the above LP problem has the same value as the
following simplified LP problem:

max

Ke−1∑
q=1

sq · `q s.t. (18)

∀ 1 ≤ q ≤ (Ke − 1) : 0 ≤ `q ≤ Lq (19)
`0 = re1 (20)

Ke−1∑
q=0

`q = Xj −Xi. (21)

Here, `0 represents (Y1 −Xi), `q represents (Yq+1 − Yq)
for q : 1 ≤ q ≤ Ke − 2, and `(Ke−1) represents (Xj −
Y(Ke−1)). It is easy to note that this LP problem is equivalent
to the well-known Fractional Knapsack Problem that admits
a greedy solution (Cormen et al. 2009). The polynomial-
time greedy algorithm for this problem maximizes `1 until it
hits its upper bound L1, after which, it maximizes `2 until it
hits its upper bound L2, and so forth, until the running sum
of `’s hits (Xj − Xi). All remaining `’s are set to 0. Here,
(Xj −Xi − re1) represents the capacity of the knapsack; Lq
represents the available amount of commodity q ≥ 1; and sq
represents the value of q.

We now show that the value of the optimal solution pro-
duced by this greedy algorithm matches Fe(Xj −Xi). This
is easy to prove by induction on the intervals between rem
and rem+1 for increasing values of m: In both the base case
and the inductive step, since s1 > s2 > · · · > s(Ke−1), in
any interval between rem and rem+1, both Fe(Xj −Xi) and
the value of the solution produced by the greedy algorithm
increase at the rate of sem.

Having represented a piecewise linear convex preference
function as the projection of an LP problem, we can now
represent the entire STPP with piecewise linear convex pref-
erence functions as a composite LP problem. In other words,
the STPP

max
∑

e=〈Xi,Xj〉∈E

Fe(Xj −Xi) s.t. X0 = 0 (22)

can now be written as the following LP problem between
Equations (23) and (27) (where e = 〈Xe

i , X
e
j 〉 is used for

simplicity of notation):

max
∑
e∈E

Ke−2∑
q=1

seq · (Y e
q+1 − Y e

q ) + se(Ke−1) · (Xe
j − Y e

(Ke−1))

(23)

∀e ∈ E , 1 ≤ q ≤ (Ke − 2) : 0 ≤ Y e
q+1 − Y e

q ≤ Le
q (24)

∀e ∈ E : 0 ≤ Xe
j − Y e

(Ke−1) ≤ Le
(Ke−1)

(25)

∀e ∈ E : Y e
1 −Xe

i = re1 (26)
X0 = 0. (27)

We note that in this composite LP formulation of the
STPP, the variables are the X’s and the Y ’s. The constraints
between them listed in Equations (24) - (27) are all simple
temporal constraints. Moreover, the objective function is lin-
ear with respect to these variables. Therefore, this LP prob-
lem fits the case discussed in the previous section. Its dual
can be interpreted as an MCCP as discussed before.

Algorithm 1 solves the above LP problem in strongly
polynomial time, i.e., in O(|Ẽ | log Ñ(|Ẽ | + Ñ log Ñ) +

Ñ |Ẽ |2) time, as shown before. Here, Ñ represents the to-
tal number of variables in the above LP problem, given by
O(

∑
e∈E Ke); and |Ẽ | represents the total number of sim-

ple temporal constraints in the above LP problem, given by
O(maxe∈E Ke · |E|). This time complexity is better than
that of previous approaches which directly call a generic
LP solver and do not have a strongly polynomial running
time (Morris et al. 2004). In our approach, LP duality—
instead of an LP solver—is used to design a low-order
strongly-polynomial-time algorithm.

Conclusions and Future Work
In this paper, we provided an LP duality perspective on tem-
poral reasoning problems. We showed that an STP can be
formulated as an LP problem and that its LP dual can be in-
terpreted as an MCCP instance. The MCCP representation
can be used to characterize the feasibility of an STP, and
this fits into the existing distance graph representation. We
then provided an LP formulation for an STP with a linear
objective function that generalizes makespan minimization



and throughput maximization. We proved that the LP dual
of the problem can be interpreted as an MCCP with deficits
and excesses, which can then be reformulated as a new
regular MCCP. We then designed a strongly-polynomial-
time algorithm for solving such a problem using the gen-
eral theory of LP duality and flow-based techniques. Fur-
thermore, we studied STPPs with piecewise linear convex
preference functions and reduced them to STPs with linear
objective functions. This enabled us to provide a very effi-
cient strongly-polynomial-time algorithm for an important
class of STPPs as well.

There are many avenues for future work. One important
avenue is to use LP duality-based strongly-polynomial-time
algorithms for load scheduling problems in smart home and
smart grid domains for energy cost minimization, which
typically have piecewise linear cost functions that are not
necessarily convex but are on individual variables. Another
avenue is to study spatiotemporal reasoning problems—
that are more expressive than regular temporal reasoning
problems—from the perspective of LP duality.
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